NAG Toolbox for MATLAB

f07bh

1 Purpose

f07bh returns error bounds for the solution of a real band system of linear equations with multiple right-hand sides, AX = B or $A^{T}X = B$. It improves the solution by iterative refinement, in order to reduce the backward error as much as possible.

2 Syntax

$$[x, ferr, berr, info] = f07bh(trans, kl, ku, ab, afb, ipiv, b, x, 'n', n, 'nrhs_p', nrhs_p)$$

3 Description

f07bh returns the backward errors and estimated bounds on the forward errors for the solution of a real band system of linear equations with multiple right-hand sides AX = B or $A^{T}X = B$. The function handles each right-hand side vector (stored as a column of the matrix B) independently, so we describe the function of f07bh in terms of a single right-hand side b and solution x.

Given a computed solution x, the function computes the *component-wise backward error* β . This is the size of the smallest relative perturbation in each element of A and b such that x is the exact solution of a perturbed system

$$|\delta a_{ij}| \le \beta |a_{ij}|$$
 $(A + \delta A)x = b + \delta b$
and $|\delta b_i| \le \beta |b_i|$.

Then the function estimates a bound for the *component-wise forward error* in the computed solution, defined by:

$$\max_{i}|x_{i}-\hat{x}_{i}|/\max_{i}|x_{i}|$$

where \hat{x} is the true solution.

For details of the method, see the F07 Chapter Introduction.

4 References

Golub G H and Van Loan C F 1996 Matrix Computations (3rd Edition) Johns Hopkins University Press, Baltimore

5 Parameters

5.1 Compulsory Input Parameters

1: trans - string

Indicates the form of the linear equations for which X is the computed solution.

$$trans = 'N'$$

The linear equations are of the form AX = B.

$$trans = 'T' or 'C'$$

The linear equations are of the form $A^{T}X = B$.

Constraint: trans = 'N', 'T' or 'C'.

[NP3663/21] f07bh.1

f07bh NAG Toolbox Manual

2: kl – int32 scalar

 k_l , the number of subdiagonals within the band of the matrix A.

Constraint: $\mathbf{kl} \geq 0$.

3: ku – int32 scalar

 k_u , the number of superdiagonals within the band of the matrix A.

Constraint: $\mathbf{ku} \geq 0$.

4: **ab(ldab,*)** - **double array**

The first dimension of the array **ab** must be at least $\mathbf{kl} + \mathbf{ku} + 1$

The second dimension of the array must be at least $max(1, \mathbf{n})$

The original n by n band matrix A as supplied to f07bd.

The matrix is stored in rows 1 to $k_l + k_u + 1$, more precisely, the element A_{ij} must be stored in

$$\mathbf{ab}(k_u + 1 + i - j, j)$$
 for $\max(1j - k_u) \le i \le \min(nj + k_l)$.

5: **afb(ldafb,*)** - **double array**

The first dimension of the array **afb** must be at least $2 \times \mathbf{kl} + \mathbf{ku} + 1$

The second dimension of the array must be at least $max(1, \mathbf{n})$

The LU factorization of A, as returned by f07bd.

6: ipiv(*) - int32 array

Note: the dimension of the array **ipiv** must be at least $max(1, \mathbf{n})$.

The pivot indices, as returned by f07bd.

7: b(ldb,*) - double array

The first dimension of the array **b** must be at least $max(1, \mathbf{n})$

The second dimension of the array must be at least max(1, nrhs p)

The n by r right-hand side matrix B.

8: x(ldx,*) - double array

The first dimension of the array \mathbf{x} must be at least $\max(1, \mathbf{n})$

The second dimension of the array must be at least max(1, nrhs p)

The n by r solution matrix X, as returned by f07be.

5.2 Optional Input Parameters

1: n - int32 scalar

Default: The second dimension of the array ab.

n, the order of the matrix A.

Constraint: $\mathbf{n} \geq 0$.

2: nrhs p - int32 scalar

Default: The second dimension of the array \mathbf{b} The second dimension of the array \mathbf{x} .

f07bh.2 [NP3663/21]

r, the number of right-hand sides.

Constraint: $\mathbf{nrhs}_{\mathbf{p}} \geq 0$.

5.3 Input Parameters Omitted from the MATLAB Interface

ldab, ldafb, ldb, ldx, work, iwork

5.4 Output Parameters

1: $\mathbf{x}(\mathbf{ldx},*)$ – double array

The first dimension of the array x must be at least $max(1, \mathbf{n})$

The second dimension of the array must be at least $max(1, nrhs_p)$

The improved solution matrix X.

2: ferr(*) - double array

Note: the dimension of the array ferr must be at least max(1, nrhs p).

ferr(j) contains an estimated error bound for the jth solution vector, that is, the jth column of X, for $j = 1, 2, \dots, r$.

3: berr(*) - double array

Note: the dimension of the array **berr** must be at least max(1, nrhs p).

berr(j) contains the component-wise backward error bound β for the jth solution vector, that is, the jth column of X, for j = 1, 2, ..., r.

4: info – int32 scalar

info = 0 unless the function detects an error (see Section 6).

6 Error Indicators and Warnings

Errors or warnings detected by the function:

```
info = -i
```

If info = -i, parameter i had an illegal value on entry. The parameters are numbered as follows:

1: trans, 2: n, 3: kl, 4: ku, 5: nrhs_p, 6: ab, 7: ldab, 8: afb, 9: ldafb, 10: ipiv, 11: b, 12: ldb, 13: x, 14: ldx, 15: ferr, 16: berr, 17: work, 18: iwork, 19: info.

It is possible that **info** refers to a parameter that is omitted from the MATLAB interface. This usually indicates that an error in one of the other input parameters has caused an incorrect value to be inferred.

7 Accuracy

The bounds returned in **ferr** are not rigorous, because they are estimated, not computed exactly; but in practice they almost always overestimate the actual error.

8 Further Comments

For each right-hand side, computation of the backward error involves a minimum of $4n(k_l + k_u)$ floating-point operations. Each step of iterative refinement involves an additional $2n(4k_l + 3k_u)$ operations. This assumes $n \gg k_l$ and $n \gg k_u$. At most five steps of iterative refinement are performed, but usually only one or two steps are required.

[NP3663/21] f07bh.3

f07bh NAG Toolbox Manual

Estimating the forward error involves solving a number of systems of linear equations of the form Ax = b or $A^{T}x = b$; the number is usually 4 or 5 and never more than 11. Each solution involves approximately $2n(2k_{l} + k_{u})$ operations.

The complex analogue of this function is f07bv.

9 Example

```
trans = 'N';
k1 = int32(1);
ku = int32(2);
ab = [0, 0, -3.66, -2.13;
     0, 2.54, -2.73, 4.07;
-0.23, 2.46, 2.46, -3.82;
     -6.98, 2.56, -4.78, 0];
afb = [0, -0.01423481108172949, -0.01423851186822769, -2.13; 0, 0, -2.73, 4.07;
     0, 2.46, 2.46, -3.839143870881089;
-6.98, 2.56, -5.932930470988539, -0.7269066639923109;
     0.0329512893982808, 0.9605233703438396, 0.8056726812110376, 0];
ipiv = [int32(2);
     int32(3);
     int32(3);
     int32(4)];
b = [4.42, -36.01;
27.13, -31.67;
-6.14, -1.16;
10.5, -25.82];
3.000000000000005, -3.9999999999995;
1.00000000000003, 7.0000000000005;
xOut =
   -2.0000
               1.0000
    3.0000
             -4.0000
    1.0000
              7.0000
   -4.0000
             -2.0000
ferr =
   1.0e-13 *
    0.1435
    0.1921
berr =
   1.0e-16 *
    0.5813
    0.9866
info =
            0
```

f07bh.4 (last) [NP3663/21]